
Achieve Pareto Principle in 
secure code review,

or die trying

Sandro “guly” Zaccarini
End Summer Camp 2K20



rushing a secure code 
review

on last day of a pentest and you've just 
found a git repo with Intranet source code?

sales sold 2days when you asked for 8+?

a coworker/friend asked you to audit a 
project offering beer+pizza?

got some spare hours and want to hunt for 
bugs in an opensource app?

2



3

ANTANI METHOD
100% SUCCESS GUARANTEED

DISCLAIMER:

this is NOT a professional method, read this as a method for 
hobbist/enthusiast.

provided mindmap will hoply grow enough to become a pro 
reference, with the help of community



whoami

Sandro "guly" Zaccarini

read, write, broke, fix software

haven't had a drink^W^W^W found a bug 
for 14 weeks

4



good old ~5 W

the WHAT you are looking for

the WHERE you are going to search for it

the WHY you need it

the HOW you'll going to find it

5



before to start, get in the 
mood

EVERY software has bugs

some are exploitable, some will become

NO software has been reviewed enough

new features means new interaction, refactory, 
legacy support, often overlooked simple stuff

NO vendor is big enough to have everything properly 
reviewed

the bigger is, the wider is the codebase to audit

6

think about Google P0: does they make 
google bug free?

also Checkpoint has a fantastic 
research team, but they still suffer for 
bugs

Let alone other big vendors like Cisco, 
Fortinet, just to name two...



before to start, get in the 
mood

the WORST thing you can do is to 
start auditing thinking that more 
talented/skilled people already did 
it and there is nothing left

7

it's surely true that more skilled people already worked on that code, but 
they're human and human fail.

it's also true that maybe they rushed too, so there is surely plenty of bugs 
waiting for you.


and don't forget that everyone has his own experience, that means a different 
approach to a problem, which makes huge difference when in a rush



before to start, get in the 
mood

the BEST thing you can do is to 
start knowing that you are not 
reading code, you are auditing it

8

you're not reading a book!!!

fit in your head that code audit != code read



the WHAT

auth bypass

lateral movement

privilege escalation

code execution

9

AKA low hanging fruit



the WHERE

ideally: everywhere there is user input

in a rush: login, registration, profile, 
messages, ...

10

WHere there are more 
probabilities of loot



the WHY
you are going to look for bugs for a reason:

impersonate admin or another user

bypass login at all

modify a configuration

dump db and decrypt data

upload a webshell

straight RCE

11

stay open, don't focus too 
much on a single goal

actually: start with a goal, but don't 
fall for a tunnel vision



the HOW
if you can, do a quick crawl on the webapp and find the 
juicy function

also have a quick look at the code base: structure, trees, 
exposed pages

audit the code starting where you *think* you could find 
the loot

grep -A 5 -B 5 / -L is our nursery's best first friend

take note about everything, you don't know what you will 
use later

12

code audit doesn't start at 
page 1don't read this as a step-by-step but 

as a very high overview of what you 
can do



mindmap is far from 
complete, remember that we 

are now 80/20



bear in mind that often we use the 
short-term "auth" in a wrong way: it 
can represent both authentication and 
authorization, CHECK what's in place 

mindmap will be published on https://
github.com/theguly sooner or later.

this will hoply grow to become more 
comprehensive and perhaps a 
detailed reference. 
i'd appreciate if you have time to give 
some feedback



real life 01
supposed admin-only page not linked to users but 
exposed without authorization check

unauthenticated SQL Injection on that page, won't let 
you to bypass login but let you to dump the DB

webapp has a custom encrypting algorithm (suppose 
they actually need to decrypt information stored to do 
some "ansible" stuff )

GOAL: dump the DB, decrypt everything, gain access 
to more targets

15



real life 02
login test all backend for a given user, primary 
backend is AD, secondary is a local SQL

unauthenticated SQL Injection, won't let you to 
bypass login

the SQL DB driver let you to stack queries, so 
you can run UPDATE or INSERT

GOAL: insert a new "admin" user to local SQL 
and login

16



closing

we *should've* achieve 
the 80% in 20', but lost 
something trying

keep in mind that the 
remaining 20% will take 
you faaaar more than 80'

17



Questions?

Acta est fabula, plaudite!

18

feedback please! 
guly@guly.org  
@theguly

vote as best short-talk of 
the year!

ask for a long talk or a 
workshop at ESC 2021

MAKE CODE AUDIT GREAT AGAIN

mailto:guly@guly.org
mailto:guly@guly.org


hold for a future 
workshop/long talk

reversing, decompiling, debugging

grep on steroids

language specific issue

home brewed crypto

OSINT (github issue, commit with partial fix)

some hand's on based on proposed mindmap

19



thanks

ESC staff

you, the crowd

20


